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Abstract

A 3-component cut of G is a set of vertices whose removal yields a graph with at least three
connected components. The 3-component connectivity number of G is denoted as κ3(G) is the
cardinality of minimum number of vertices that must be removed from G in order to obtain a
graph with at least three connected components. In this paper, we identified that for an arithmetic
graph G = Vn where n = pa1

1 × pa2
2 × · · · × par

r , r ≥ 3 and if ai > 2 for at least one i then the
3-component connectivity number is equal to its connectivity number r.
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1 Introduction

For notation and graph theory terminalogy not given here, we follow [2]. In this paper three com-
ponent connectivity of an Arithmetic Graph G = Vn is studied. A 3-component cut of G is a set of
vertices whose removal yields a graph with at least three connected components. The three component
connectivity number of G is denoted as κ3(G) is the cardinality of minimum number of vertices that
must be removed from G in order to obtain a graph with at least three connected components. This
concept was originally introduced by sampathkumar [10] has been recently studied for hypercubes by
Hsu-et-al-in [11]. The definition is from [3]. A 3-component cut of G is a set of vertices whose removal
yields a graph with at least three connected components. The 3- component connectivity number of
G is denoted as κ3(G) is the cardinality of minimum number of vertices that must be removed from
G in order to obtain a graph with at least three connected components. The arithmetic graph Vn is
defined as a graph with its vertex set is the set consists of the divisors of n(excluding1) where n is a
positive integer and G = Vn, n = pa11 ×pa22 ×· · ·×parr where p′is are distinct primes and a′is ≥ 1 and two
distinct vertices a,b which are not of the same parity are adjacent in this graph if (a,b) = pi for some
i, 1 ≤ i ≤ r. The vertices a and b are said to be of the same parity if both a and b are the powers
of the same prime, for instance a = p2, b = p5. This concept was studied from [12]. Also various
authors studied different parameters of an arithmetic graph. In [7] the super connectivity number
of an arithmetic graph is studied by L.Mary jenitha and S.Sujitha. In [5] the connectivity number
of an arithmetic graph is studied by L.Mary jenitha and S.Sujitha. Later, the various parameters of
connectivity of an arithmetic graph are studied by the same authors in [6,8]. The following theorems
are used in sequel.

Theorem 1.1. [6]For an arithmetic graph G=Vn, n =pa11 × pa22 where p1 and p2 are distinct primes,
a1, a2 ≥ 1 then ǫ = 4a1a2 − a1 − a2, where ǫ is the size of the graph G.

Theorem 1.2. [6]For an arithmetic graph G=Vn, n =pa11 × pa22 where p1 and p2 are distinct primes,
a1, a2 ≥ 1 then G is a bipartite graph.



The 3-Component Connectivity Number of an Arithmetic Graph G = Vn 329

Theorem 1.3. [9] For an arithmetic graph G = Vn , n = pa11 × pa22 × · · · × parr , then the number of

vertices of G is |V | =
r∏

i=1
(ai + 1)− 1.

Theorem 1.4. [6] Let G = Vn an arithmetic graph n = pa11 ×pa22 ×· · ·×parr , for any vertex u =
∏

i∈B
pαi

i

where B ⊆ 1, 2, 3, . . . r, 1 ≤ αi ≤ ai∀i ∈ B.

(1) If u = pj where j ∈ 1, 2, 3, . . . , r, then deg(u) =

[

aj
r∏

i=1,i 6=j

(ai + 1)− 1

]

− |aj − 1| .

(2) If u = pαi

i 1 < αi ≤ ai∀i ∈ B, then deg(u) = [
r∏

i=1,i/∈B
(ai + 1)]− 1

(3) If u =
∏

i∈B
pαi

i , |B| ≥ 2, 1 < αi ≤ ai, ∀i ∈ B then deg(u) = |B|
r∏

i=1,i/∈B
(ai + 1)

(4) If u =
∏

i∈B
pαi

i , αi = 1 for some i ∈ B
′ ⊆ B, then deg(u) = [

∣
∣
∣B −B

′
∣
∣
∣+

∑

i∈B′
ai]

r∏

i=1,i/∈B
(ai +1) where

B is the number of primes product in u, B′ is the number of primes having power 1 in chosen vertex
u.

Observation (1.5). [10] The following are the inequalities of an arbitrary simple non complete
graph G of order n.
(i) κr(G) ≤ κr+1(G), for r = {2, 3, . . . , n− 1}.
(ii) λr(G) ≤ λr+1(G), for r = {2, 3, . . . , n− 1}.

Theorem 1.6. [5] For an arithmetic graph G= Vn, n =pa11 ×pa22 where p1 and p2 are distinct primes,
then

κ(Vn) = κ
′
(Vn) =

{

1 for ai = 1 aj > 1; i, j = 1, 2

2 for ai > 1; i = 1, 2

Theorem 1.7. [5] For an arithmetic graph G = Vn, n = pa11 ×pa22 × . . .×parr where pi, i = 1, . . . , r(r >
2) are distinct primes and ai = 1 for all i = 1, 2, . . . , r then κ(Vn) = κ

′
(Vn) = r.

Theorem 1.8. [5] For an arithmetic graph G = Vn,n =pa11 × pa22 × . . . . . .× parr where p1, p2,...,pr are
distinct primes and ai

′s ≥ 1 for all i = 1, 2, 3, . . . , r and n is a product of more than two primes, then
κ(Vn) = κ

′
(Vn) = r.

2 The 3-Component Connectivity Number of G = Vn

In this section the 3- component connectivity number of an arithmetic graph G = Vn, where n =
pa11 × pa22 × · · · × parr , ai ≥ 1, r ≥ 2 for i ∈ {1, 2, . . . , r} are categorised.

Theorem 2.1. A 3-component cut does not exist for an arithmetic graph G = Vn, where n = pa11 ×
pa22 ; a1 = a2 = 1.

Proof. Consider the arithmetic graph Vn, n = pa11 × pa22 a1 = a2 = 1, then n is the product of two
distinct primes. By Theorem1.3, we have |V (G)| = 3. Obviously it is clear that there does not exist
a three component cut.

Theorem 2.2. If G = Vn is an arithmetic graph where n = p21 × p2 where p1 and p2 are distinct
primes then κ3(G) = 2.

Proof. Let G = Vn be an arithmetic graph where n = p21 × p2 then the vertex set consists of vertices
p1, p

2
1, p2, p1×p2, p21×p2. Here the only pendant vertex in G is p21 and N(p21) = p1×p2. So the removal

of the vertex p1 × p2 makes the graph disconnected into two components G1 and G2 where G1 is an
isolated vertex p21 and G2 is a path with three vertices p1, p2, p

2
1 × p2. Since (p1, p

2
1 × p2) = p1 and

(p2, p
2
1 × p2) = p2, the vertex p21 × p2 is the internal vertex of the path. So, the removal of the vertex

p21 × p2 from G2 results the component disconnected into two isolated vertices p1 and p2. Since the
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induced graph of G − S has three isolated vertices, the set S = {p1 × p2, p
2
1 × p2} is a 3-component

cut. Also, it is clear that no set S1 ⊂ S is a 3-component cut, hence S is minimum and we have
κ3(G) = |S| = 2.

Theorem 2.3. In an arithmetic graph G = Vn κ3(G) = 1 iff n = pa11 × p2 where p1, p2 are distinct
primes and a1 > 2.

Proof. Let G = Vn be an arithmetic graph. Suppose that, the 3-connectivity number, κ3(G) = 1.
From the Observation 1.5, κ(G) ≤ κ3(G) and hence κ(G) = 1. By Theorem 1.6, the connectivity
number κ(G) = 1 for n = pa11 ×p2 but if a1 = 1, then G is a tree with three vertices and if a1 = 2 then
by Theorem 2.1 κ3(G) = 2 . Therefore, the only possibility is n = pa11 × p2 where a1 > 2. Conversely,
consider an arithmetic graph G = Vn n = pa11 × p2 where a1 > 2. To prove that κ3(G) = 1 (i.e) to
prove the removal of exactly one vertex makes the graph disconnected into three or more components.
By Theorem 1.6, the connectivity number κ(G) = 1 for n = pa11 × p2 ; a1 ≥ 1. By the proof of the
Theorem 1.1 and by the definition of an arithmetic graph, (pα1

1 , p1 × p2) = p1 ; 1 ≤ α1 ≤ a1 and
N(pα1

1 ) = {p1× p2} for 1 < α1 ≤ a1 thus it is clear that the number of pendant vertices in G is a1− 1,
and the neighbor for these pendant vertices is a unique vertex p1 × p2. Hence S = {p1 × p2} is a
3-component cut.

Theorem 2.4. For an arithmetic graph G = Vn, n = pa11 × pa22 where a1 = a2 = 2 then κ3(G) = 3.

Proof. By Theorem 1.6 κ(G) = 2 and S1 = {p1, p2}. The removal of S1 from G makes the graph
disconnected and the induced graph of G−S1 has exactly two components. Since by Observation 1.5,
κ(G) ≤ κ3(G) we need to remove few vertices from G − S1 to make the graph disconnected into at
least three components. Since d(p1 × p22) = d(p21 × p2) = 1 and its neighbor say N(p1 × p22) = p21 also
N(p21× p2) = p22. Hence either the set S = {S1 ∪ p21} or S = {S1 ∪ p22} is a three component cut. Since
no subset of S is a 3-component cut, S is minimum. Hence we have κ3(G) = |S| = 3

Theorem 2.5. Let G = Vn be an arithmetic graph, n = pa11 ×pa22 where a1 > 2, a2 ≥ 2 then κ3(G) = 2.

Proof. By Theorem1.2, G is a bipartite graph with partitions A and B. The partition A consists of
prime vertices, power of prime vertices. Also, the partition B consists of product of primes vertices,
product of power of prime vertices. If a1 > 2 and a2 ≥ 2 then the number of vertices in B, which
are adjacent only to p1 and p2 is at least two. So the removal of the vertices in S = {p1, p2} from
G makes the induced graph G[V − S] disconnected into at least three components. Hence the set
S is a 3-component cut. Also, by Theorem 1.6 κ(G) = 2 shows that the set S is minimum. Hence
κ3(G) = |S| = 2.

Theorem 2.6. For an arithmetic graph G = Vn, n = p1×p2×p3 the 3-component connectivity number
κ3(G) = 4.

Proof. By Theorem 1.3, |V | = 7 and the vertex set V (G) = {p1, p2, p3, p1 × p2, p1 × p3, p2 × p3, p1 ×
p2×p3}. In this graph if we remove the adjacent vertices S1 = {p1, p2, p3} of a minimum degree vertex
p1 × p2 × p3 the induced graph G[V − S1] has two components G1 and G2 where G1 is an isolated
vertex p1 × p2 × p3 and G2 is a complete graph k3. The removal of any vertex from G[V − S1] does
not make the graph disconnected into three components. On the other hand, if we remove the set
S = {p1 × p2, p1 × p3, p2 × p3, p1 × p2 × p3} the graph gets disconnected into three components, each
component is an isolated vertex. Since no proper subset of S satifies the definition of 3-component
cut S is minimum. Hence κ3(G) = 4.

Theorem 2.7. For an arithmetic graph G = Vn, n = pa11 × pa22 × · · · × parr , r > 3 and ai = 1, ∀ i ∈
{1, 2, . . . , r}. Then κ3(G) = 2r − 1.

Proof. Consider an arithmetic graph G = Vn, n = p1 × p2 × · · · × pr and r > 3. Then the vertex set
consists of primes, product of two primes, product of three primes,....., product of r−1 primes, product
of r primes. By Theorem 1.7, we know that κ(G) = r, if we remove the set S1 = {p1, p2, . . . , pr} from
G then the graph G[V (G) − S1] has two components G1 and G2 where G1 is an isolated vertex
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p1 × p2 × · · · × pr and G2 is a connected graph. Hence κ3(G) > κ(G). Let X1 = { ∏
i∈B∗

pi : B∗ ⊂
{1, 2, . . . , r, |B∗| = r − 1} be the set of minimum degree vertices in the component G2. Choose
any one of the vertex u ∈ X1 let it be u = p1 × p2 × · · · × pr−1, the degree d(u) = r − 1 and
N(u) = {p1 × pr, p2 × pr, . . . , pr−1 × pr}. The set S = {p1, p2, . . . , pr, p1 × pr, p2 × pr, . . . , pr−1 × pr} is
a 3-component cut. Since G[V −S] has exactly three components G1, G2, G3 where G1 is an isolated
vertex p1×p2×· · ·×pr, G2 is an isolated vertex p1×p2×· · ·×pr−1 and G3 is a connected component
containing vertices such as product of two primes other than the vertices in S, product of three
primes,.....,product of r−2 primes, X1−{p1×pr, p2×pr . . . pr−1×pr}. To prove S is minimum, suppose
S

′ ⊂ S be a minimum 3-component cut then G[V − S
′
] has at least three components G1, G2, G3

where G1 is an isolated vertex p1 × p2 × · · · × pr, G2 is an isolated vertex p1 × p2 × · · · × pr−1 and
G3 is a connected component. Let us assume that v ∈ S and v /∈ S

′
if v = pi, i ∈ {1, 2, . . . , r}.

Since G1 is an isolated vertex p1 × p2 × · · · × pr then the (p1 × p2 × · · · × pr, pi) 6= pi which is
a contradiction to the definition of an arithmetic graph. Similarly if v = pi × pr−1 then we have
(p1 × p2 × · · · × pr−1, pi × pr−1) 6= pi which is a contradiction. Therefore S is minimum and by
Theorem 1.4, we have κ3(G) = |S| = d(p1 × p2 × · · · × pr) + d(p1 × p2 × · · · × pr−1)− |W |.
= r + 2(r − 1) − (r − 1) = 2r − 1, where |w| is the number of vertices which are adjacent to both
p1 × p2 × · · · × pr and p1 × p2 × · · · × pr−1.

The following example shows that for any arithmetic graph G = Vn, n = pa11 × pa22 where a1 >
2, a2 ≥ 2 the 3-component connectivity number κ3(G) and the connectivity number κ(G) are equal.

Example 2.1. The following Figure 1 shows an arithmetic graph G = V72, 72 = 23 × 32. Clearly the
vertex set consists of vertices V (G) = {2, 22, 23, 3, 32, 2 × 3, 22 × 3, 23 × 3, 2 × 32, 22 × 32, 23 × 32}.
The minimum degree δ(G) = 2 and the 3-component cut S = {2, 3}.

b

b

b b

b

b

b

bb

b

b

22 × 32

23

23 × 3

23 × 32

3

32

2

2× 3

2× 32

22

22 × 3

Figure 2.1: Arithmetic graph G = V72

The induced graph G[V72 − S] shown in Figure 2, has three components G1, G2 and G3 where
G1 is a connected component, G2 and G3 are isolated vertices 23 × 32 and 22 × 32 respectively. By
Theorem 1.6, the vertex cut is also {2, 3}. This shows that κ3(G) = κ(G) as well as the vertices in
3-component cut is same as the vertices in the vertex cut.

Theorem 2.8. For an arithmetic graph G = Vn, n = pa11 × pa22 × · · · × parr , r ≥ 3, a1 = 2 and
aj = 1, ∀ j ∈ {2, . . . , r}. Then κ3(G) = r + 1.

Proof. Consider an arithmetic graph G = Vn where n = p21 × p2 × · · · × pr, r ≥ 3. Then the graph G
contains vertices such as p1, p2, . . . , pr, p

2
1, p1 × p2, . . . , p1 × pr, p

2
1 × p2, . . . , p

2
1 × p2, p2 × p3, . . . pr−1 ×
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Figure 2.2: Induced graph G[V72 − S]

pr, . . . , p1 × p2 × · · · × pr, p
2
1 × p2 × · · · × pr. By Theorem 1.8 the connectivity number κ(G) = r

and the minimum vertex cut is S1 = {p1, p2, . . . , pr}. The induced graph G[V − S1] has exactly two
components G1 and G2 where G1 is an isolated vertex p21 × p2 × · · · × pr and G2 is a connected graph
which contains all the vertices other than V (G) − {r + 1} vertices. Now the minimum degree vertex
in the connected component G2 is p1 × p2 × · · · × pr and N(p1 × p2 × · · · × pr) = p21. So, the removal
of the set S = S1 ∪ {p21} from G makes the graph disconnected into exactly three components. Hence
the set S = {p1, p2, . . . , pr, p21} is a 3- component cut. Since the removal of any vertex from the set
S, either violates the connectivity property or the number of components in the induced graph is less
than three. Therefore the set S is minimum. Hence we have κ3(G) = |S| = r + 1.

Theorem 2.9. If G = Vn is an arithmetic graph n = pa11 × pa22 × · · · × parr , r ≥ 3, ai > 2 for at least
one i then κ3(G) = r.

Proof. Let G = Vn be an arithmetic graph where n = pa11 ×pa22 ×· · ·×parr , r ≥ 3, Case(i) Let us assume
that a1 > 2 and aj = 1 for j ∈ {2, 3, . . . , r}. The vertex set V (G) = {pα1

1 , p2, . . . , pr, p
α1
1 × pj , pr−1 ×

pr . . . , p
α1
1 ×p2×· · ·×pr; 1 ≤ α1 ≤ a1, j = 1, 2 . . . r}. Here the vertices {pα1

1 ×p2×· · ·×pr; 1 ≤ α1 ≤ a1}
has degree r and have unique neighbors say S = {p1, p2, . . . , pr}. So, the removal of S from G results
the graph disconnected and since ai > 2 the number of isolated vertices in G[V − S] is at least two
and a connected component. Thus the set S satisfies the 3-Component cut definition, hence S is a 3-
component cut. Also, By Theorem1.8 κ(G) = r, this shows that S is a minimum 3- component cut.
Hence proved.

Case(ii)If ai > 2 for more than one i. Let us assume that n = pa11 × pa22 × · · · × parr such that
a1 ≥ a2 ≥ . . . ar. By the definition of an arithmetic graph, we know that (pα1

1 ×pa22 ×· · ·×parr , pi) = pi;
for i ∈ {1, 2, . . . , r}; 2 < α1 ≤ a1. Since, a1 > 2 the number of vertices in G which are adjacent only
to S = {p1, p2, . . . , pr} is at least two. Thus the induced graph G[V-S] has at least three components.
Hence by the proof of Theorem 2.9 follows the required result.

3 Conclusion

From the above study, we observe that for an arithmetic graph G = Vn, if the number of primes in n
is greater than two then the 3-component connectivity number is strictly greater than its connectivity
number. But if the number of primes in n is greater than two and at least one of its prime power is
greater than two then the connectivity number and 3-component connectivity number are same which
is equal to number of primes in n.
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