ISBN : 978-93-91077-53-2

Pre-Conference Proceedings of the International Conference on Discrete Mathematics (ICDM2021-MSU)

Editors : R. Kala, S. Monikandan, K. Selvakumar and T. Tamizh Chelvam

Department of Mathematics
Manonmaniam Sundaranar University Tirunelveli 627012, Tamilnadu, INDIA

37 C. Sankari, R. Sangeetha and K. Arthi 247-253
Claw - decomposition of Kneser graph $K G_{n, 3}$
38 P. Arul Paul Sudhahar and W. Jebi 254-260
Nonsplit edge monophonic domination number of a graph
39 S.K. Vaidya and G.K. Rathod
261-268
On general randic energy of graphs
40 Sheeba Agnes and R. Geethanjaliyadav
$269-279$
Rupture degree of some classes of graphs
41 P. Arul Paul Sudhahar and J. Jeba Lisa
$280-287$
Minimal nonsplit geodetic domination number of a graph
42 K. Selvakumar and P. Subbulakshmi
288-298
On the crosscap of a graph associated to a commutative ring
43 S.L. Sumi, V. Mary Gleeta and J. Befija Minnie
The geodetic cototal domination number of a graph
44 K. Prabha Ananthi and T. Tamizh Chelvam
$308-316$
On the reduced non - zero component graph of semi-modules
45 S. Sujitha and D. Sharmila
$317-323$
The Adjacency Energy of a T2 Hypergraph
46 S. Santha and G.T. Krishna Veni
$324-327$
Inverse domination of the transformation of n-sunlet graph
47 S. Sujitha and L. Mary Jenitha
$328-333$
The 3 - component connectivity number of an arithmetic graph
48 K. Reji Kumar and E.N. Satheesh
$334-339$
On the edge - vertex roman domination of graphs
49 J. Ashwini, S. Pethanachi Selvam and R. B. Gnanajothi
$340-346$
Various versions of lucky labelling of book graphs
50 C.M. Deshpande, Y.S. Gaidhani and B.P. Athawale
$347-354$ Circulant semigraphs

51 Anjali Yadav and S. Minirani
$355-357$
Distance antimagic labelling of some graphs
52 S.S. Sandhya and H. Aswathy $358-359$
More results on root square mean labelling of graphs
53 T. Sathiyanandham and S. Arokiaraj $360-365$
C - average eccentric graphs
54 T. Tamizh Chelvam, M. Balamurugan and S. Anukumar Kathirvel 366-370
Connectivity of the complement of generalized total graph of finite fields
55 B. Chandra and R. Kala $371-383$
Group S3 cordial prime labeling of some Shadow graphs
56 M. Sree Vidya and S.S. Sandhya
$384-389$
Double continuous monotonic decomposition of Stolarsky 3 mean graphs
57 C. Gayathri and S. Saravanakumar $390-396$
Equitable Irregular Edge-Weighting of Polar Grid Graph and Mongolian Tent Graph

The 3-Component Connectivity Number of Arithmetic Graph

Sujitha. S^{1} and Mary Jenitha. L^{2}
${ }^{1}$ Department of Mathematics
Holy Cross College (Autonomous), Nagercoil, India
${ }^{2}$ Department of Mathematics
Manonmaniam Sundaranar University
Abishekapatti,Tirunelveli, Tamil nadu, India
${ }^{1}$ sujitha.s@holycrossngl.edu.in, ${ }^{2}$ jeni.mathematics@gmail.com

Abstract

A 3-component cut of G is a set of vertices whose removal yields a graph with at least three connected components. The 3 -component connectivity number of G is denoted as $\kappa_{3}(G)$ is the cardinality of minimum number of vertices that must be removed from G in order to obtain a graph with at least three connected components. In this paper, we identified that for an arithmetic graph $G=V_{n}$ where $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, r \geq 3$ and if $a_{i}>2$ for at least one i then the 3 -component connectivity number is equal to its connectivity number r.

Keywords: arithmetic graph, component connectivity number, component cut.
Subject Classification: 05C40

1 Introduction

For notation and graph theory terminalogy not given here, we follow [2]. In this paper three component connectivity of an Arithmetic Graph $G=V_{n}$ is studied. A 3 -component cut of G is a set of vertices whose removal yields a graph with at least three connected components. The three component connectivity number of G is denoted as $\kappa_{3}(G)$ is the cardinality of minimum number of vertices that must be removed from G in order to obtain a graph with at least three connected components. This concept was originally introduced by sampathkumar [10] has been recently studied for hypercubes by Hsu-et-al-in [11]. The definition is from [3]. A 3-component cut of G is a set of vertices whose removal yields a graph with at least three connected components. The 3 - component connectivity number of G is denoted as $\kappa_{3}(G)$ is the cardinality of minimum number of vertices that must be removed from G in order to obtain a graph with at least three connected components. The arithmetic graph V_{n} is defined as a graph with its vertex set is the set consists of the divisors of n (excluding1) where n is a positive integer and $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}$ where $p_{i}^{\prime} s$ are distinct primes and $a_{i}^{\prime} s \geq 1$ and two distinct vertices a, b which are not of the same parity are adjacent in this graph if $(a, b)=p_{i}$ for some $i, 1 \leq i \leq r$. The vertices a and b are said to be of the same parity if both a and b are the powers of the same prime, for instance $a=p^{2}, b=p^{5}$. This concept was studied from [12]. Also various authors studied different parameters of an arithmetic graph. In [7] the super connectivity number of an arithmetic graph is studied by L.Mary jenitha and S.Sujitha. In [5] the connectivity number of an arithmetic graph is studied by L.Mary jenitha and S.Sujitha. Later, the various parameters of connectivity of an arithmetic graph are studied by the same authors in $[6,8]$. The following theorems are used in sequel.

Theorem 1.1. [6] For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where p_{1} and p_{2} are distinct primes, $a_{1}, a_{2} \geq 1$ then $\epsilon=4 a_{1} a_{2}-a_{1}-a_{2}$, where ϵ is the size of the graph G.

Theorem 1.2. [6] For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where p_{1} and p_{2} are distinct primes, $a_{1}, a_{2} \geq 1$ then G is a bipartite graph.

Theorem 1.3. [9] For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}$, then the number of vertices of G is $|V|=\prod_{i=1}^{r}\left(a_{i}+1\right)-1$.

Theorem 1.4. [6] Let $G=V_{n}$ an arithmetic graph $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}$, for any vertex $u=\prod_{i \in B} p_{i}^{\alpha_{i}}$ where $B \subseteq 1,2,3, \ldots r, 1 \leq \alpha_{i} \leq a_{i} \forall i \in B$.
(1) If $u=p_{j}$ where $j \in 1,2,3, \ldots, r$, then $\operatorname{deg}(u)=\left[a_{j} \prod_{i=1, i \neq j}^{r}\left(a_{i}+1\right)-1\right]-\left|a_{j}-1\right|$.
(2) If $u=p_{i}^{\alpha_{i}} 1<\alpha_{i} \leq a_{i} \forall i \in B$, then $\operatorname{deg}(u)=\left[\prod_{i=1, i \notin B}^{r}\left(a_{i}+1\right)\right]-1$
(3) If $u=\prod_{i \in B} p_{i}^{\alpha_{i}},|B| \geq 2,1<\alpha_{i} \leq a_{i}, \forall i \in B$ then $\operatorname{deg}(u)=|B| \prod_{i=1, i \notin B}^{r}\left(a_{i}+1\right)$
(4) If $u=\prod_{i \in B} p_{i}^{\alpha_{i}}, \alpha_{i}=1$ for some $i \in B^{\prime} \subseteq B$, then $\operatorname{deg}(u)=\left[\left|B-B^{\prime}\right|+\sum_{i \in B^{\prime}} a_{i}\right] \prod_{i=1, i \notin B}^{r}\left(a_{i}+1\right)$ where B is the number of primes product in u, B^{\prime} is the number of primes having power 1 in chosen vertex u.

Observation (1.5). [10] The following are the inequalities of an arbitrary simple non complete graph G of order n.
(i) $\kappa_{r}(G) \leq \kappa_{r+1}(G)$, for $r=\{2,3, \ldots, n-1\}$.
(ii) $\lambda_{r}(G) \leq \lambda_{r+1}(G)$, for $r=\{2,3, \ldots, n-1\}$.

Theorem 1.6. [5] For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where p_{1} and p_{2} are distinct primes, then
$\kappa\left(V_{n}\right)=\kappa^{\prime}\left(V_{n}\right)= \begin{cases}1 & \text { for } a_{i}=1 a_{j}>1 ; i, j=1,2 \\ 2 & \text { for } a_{i}>1 ; i=1,2\end{cases}$
Theorem 1.7. [5] For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \ldots \times p_{r}^{a_{r}}$ where $p_{i}, i=1, \ldots, r(r>$ 2) are distinct primes and $a_{i}=1$ for all $i=1,2, \ldots, r$ then $\kappa\left(V_{n}\right)=\kappa^{\prime}\left(V_{n}\right)=r$.

Theorem 1.8. [5] For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \ldots \ldots \times p_{r}^{a_{r}}$ where $p_{1}, p_{2, \ldots,}, p_{r}$ are distinct primes and $a_{i}{ }^{\prime} s \geq 1$ for all $i=1,2,3, \ldots, r$ and n is a product of more than two primes, then $\kappa\left(V_{n}\right)=\kappa^{\prime}\left(V_{n}\right)=r$.

2 The 3-Component Connectivity Number of $G=V_{n}$

In this section the 3 - component connectivity number of an arithmetic graph $G=V_{n}$, where $n=$ $p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, a_{i} \geq 1, r \geq 2$ for $i \in\{1,2, \ldots, r\}$ are categorised.

Theorem 2.1. A 3-component cut does not exist for an arithmetic graph $G=V_{n}$, where $n=p_{1}^{a_{1}} \times$ $p_{2}^{a_{2}} ; a_{1}=a_{2}=1$.

Proof. Consider the arithmetic graph $V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} a_{1}=a_{2}=1$, then n is the product of two distinct primes. By Theorem1.3, we have $|V(G)|=3$. Obviously it is clear that there does not exist a three component cut.

Theorem 2.2. If $G=V_{n}$ is an arithmetic graph where $n=p_{1}^{2} \times p_{2}$ where p_{1} and p_{2} are distinct primes then $\kappa_{3}(G)=2$.

Proof. Let $G=V_{n}$ be an arithmetic graph where $n=p_{1}^{2} \times p_{2}$ then the vertex set consists of vertices $p_{1}, p_{1}^{2}, p_{2}, p_{1} \times p_{2}, p_{1}^{2} \times p_{2}$. Here the only pendant vertex in G is p_{1}^{2} and $N\left(p_{1}^{2}\right)=p_{1} \times p_{2}$. So the removal of the vertex $p_{1} \times p_{2}$ makes the graph disconnected into two components G_{1} and G_{2} where G_{1} is an isolated vertex p_{1}^{2} and G_{2} is a path with three vertices $p_{1}, p_{2}, p_{1}^{2} \times p_{2}$. Since $\left(p_{1}, p_{1}^{2} \times p_{2}\right)=p_{1}$ and $\left(p_{2}, p_{1}^{2} \times p_{2}\right)=p_{2}$, the vertex $p_{1}^{2} \times p_{2}$ is the internal vertex of the path. So, the removal of the vertex $p_{1}^{2} \times p_{2}$ from G_{2} results the component disconnected into two isolated vertices p_{1} and p_{2}. Since the
induced graph of $G-S$ has three isolated vertices, the set $S=\left\{p_{1} \times p_{2}, p_{1}^{2} \times p_{2}\right\}$ is a 3-component cut. Also, it is clear that no set $S_{1} \subset S$ is a 3 -component cut, hence S is minimum and we have $\kappa_{3}(G)=|S|=2$.

Theorem 2.3. In an arithmetic graph $G=V_{n} \kappa_{3}(G)=1$ iff $n=p_{1}^{a_{1}} \times p_{2}$ where p_{1}, p_{2} are distinct primes and $a_{1}>2$.

Proof. Let $G=V_{n}$ be an arithmetic graph. Suppose that, the 3-connectivity number, $\kappa_{3}(G)=1$. From the Observation 1.5, $\kappa(G) \leq \kappa_{3}(G)$ and hence $\kappa(G)=1$. By Theorem 1.6, the connectivity number $\kappa(G)=1$ for $n=p_{1}^{a_{1}} \times p_{2}$ but if $a_{1}=1$, then G is a tree with three vertices and if $a_{1}=2$ then by Theorem $2.1 \kappa_{3}(G)=2$. Therefore, the only possibility is $n=p_{1}^{a_{1}} \times p_{2}$ where $a_{1}>2$. Conversely, consider an arithmetic graph $G=V_{n} n=p_{1}^{a_{1}} \times p_{2}$ where $a_{1}>2$. To prove that $\kappa_{3}(G)=1$ (i.e) to prove the removal of exactly one vertex makes the graph disconnected into three or more components. By Theorem 1.6, the connectivity number $\kappa(G)=1$ for $n=p_{1}^{a_{1}} \times p_{2} ; a_{1} \geq 1$. By the proof of the Theorem 1.1 and by the definition of an arithmetic graph, $\left(p_{1}^{\alpha_{1}}, p_{1} \times p_{2}\right)=p_{1} ; 1 \leq \alpha_{1} \leq a_{1}$ and $N\left(p_{1}^{\alpha_{1}}\right)=\left\{p_{1} \times p_{2}\right\}$ for $1<\alpha_{1} \leq a_{1}$ thus it is clear that the number of pendant vertices in G is $a_{1}-1$, and the neighbor for these pendant vertices is a unique vertex $p_{1} \times p_{2}$. Hence $S=\left\{p_{1} \times p_{2}\right\}$ is a 3 -component cut.

Theorem 2.4. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where $a_{1}=a_{2}=2$ then $\kappa_{3}(G)=3$.
Proof. By Theorem $1.6 \kappa(G)=2$ and $S_{1}=\left\{p_{1}, p_{2}\right\}$. The removal of S_{1} from G makes the graph disconnected and the induced graph of $G-S_{1}$ has exactly two components. Since by Observation 1.5, $\kappa(G) \leq \kappa_{3}(G)$ we need to remove few vertices from $G-S_{1}$ to make the graph disconnected into at least three components. Since $d\left(p_{1} \times p_{2}^{2}\right)=d\left(p_{1}^{2} \times p_{2}\right)=1$ and its neighbor say $N\left(p_{1} \times p_{2}^{2}\right)=p_{1}^{2}$ also $N\left(p_{1}^{2} \times p_{2}\right)=p_{2}^{2}$. Hence either the set $S=\left\{S_{1} \cup p_{1}^{2}\right\}$ or $S=\left\{S_{1} \cup p_{2}^{2}\right\}$ is a three component cut. Since no subset of S is a 3 -component cut, S is minimum. Hence we have $\kappa_{3}(G)=|S|=3$
Theorem 2.5. Let $G=V_{n}$ be an arithmetic graph, $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where $a_{1}>2, a_{2} \geq 2$ then $\kappa_{3}(G)=2$.
Proof. By Theorem1.2, G is a bipartite graph with partitions A and B. The partition A consists of prime vertices, power of prime vertices. Also, the partition B consists of product of primes vertices, product of power of prime vertices. If $a_{1}>2$ and $a_{2} \geq 2$ then the number of vertices in B, which are adjacent only to p_{1} and p_{2} is at least two. So the removal of the vertices in $S=\left\{p_{1}, p_{2}\right\}$ from G makes the induced graph $G[V-S]$ disconnected into at least three components. Hence the set S is a 3 -component cut. Also, by Theorem $1.6 \kappa(G)=2$ shows that the set S is minimum. Hence $\kappa_{3}(G)=|S|=2$.

Theorem 2.6. For an arithmetic graph $G=V_{n}, n=p_{1} \times p_{2} \times p_{3}$ the 3-component connectivity number $\kappa_{3}(G)=4$.

Proof. By Theorem 1.3, $|V|=7$ and the vertex set $V(G)=\left\{p_{1}, p_{2}, p_{3}, p_{1} \times p_{2}, p_{1} \times p_{3}, p_{2} \times p_{3}, p_{1} \times\right.$ $\left.p_{2} \times p_{3}\right\}$. In this graph if we remove the adjacent vertices $S_{1}=\left\{p_{1}, p_{2}, p_{3}\right\}$ of a minimum degree vertex $p_{1} \times p_{2} \times p_{3}$ the induced graph $G\left[V-S_{1}\right]$ has two components G_{1} and G_{2} where G_{1} is an isolated vertex $p_{1} \times p_{2} \times p_{3}$ and G_{2} is a complete graph k_{3}. The removal of any vertex from $G\left[V-S_{1}\right]$ does not make the graph disconnected into three components. On the other hand, if we remove the set $S=\left\{p_{1} \times p_{2}, p_{1} \times p_{3}, p_{2} \times p_{3}, p_{1} \times p_{2} \times p_{3}\right\}$ the graph gets disconnected into three components, each component is an isolated vertex. Since no proper subset of S satifies the definition of 3 -component cut S is minimum. Hence $\kappa_{3}(G)=4$.

Theorem 2.7. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, r>3$ and $a_{i}=1, \forall i \in$ $\{1,2, \ldots, r\}$. Then $\kappa_{3}(G)=2 r-1$.

Proof. Consider an arithmetic graph $G=V_{n}, n=p_{1} \times p_{2} \times \cdots \times p_{r}$ and $r>3$. Then the vertex set consists of primes, product of two primes, product of three primes,....., product of $r-1$ primes, product of r primes. By Theorem 1.7, we know that $\kappa(G)=r$, if we remove the set $S_{1}=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ from G then the graph $G\left[V(G)-S_{1}\right]$ has two components G_{1} and G_{2} where G_{1} is an isolated vertex
$p_{1} \times p_{2} \times \cdots \times p_{r}$ and G_{2} is a connected graph. Hence $\kappa_{3}(G)>\kappa(G)$. Let $X_{1}=\left\{\prod_{i \in B^{*}} p_{i}: B^{*} \subset\right.$ $\left\{1,2, \ldots, r,\left|B^{*}\right|=r-1\right\}$ be the set of minimum degree vertices in the component G_{2}. Choose any one of the vertex $u \in X_{1}$ let it be $u=p_{1} \times p_{2} \times \cdots \times p_{r-1}$, the degree $d(u)=r-1$ and $N(u)=\left\{p_{1} \times p_{r}, p_{2} \times p_{r}, \ldots, p_{r-1} \times p_{r}\right\}$. The set $S=\left\{p_{1}, p_{2}, \ldots, p_{r}, p_{1} \times p_{r}, p_{2} \times p_{r}, \ldots, p_{r-1} \times p_{r}\right\}$ is a 3 -component cut. Since $G[V-S]$ has exactly three components G_{1}, G_{2}, G_{3} where G_{1} is an isolated vertex $p_{1} \times p_{2} \times \cdots \times p_{r}, G_{2}$ is an isolated vertex $p_{1} \times p_{2} \times \cdots \times p_{r-1}$ and G_{3} is a connected component containing vertices such as product of two primes other than the vertices in S, product of three primes \qquad ,product of $r-2$ primes, $X_{1}-\left\{p_{1} \times p_{r}, p_{2} \times p_{r} \ldots p_{r-1} \times p_{r}\right\}$. To prove S is minimum, suppose $S^{\prime} \subset S$ be a minimum 3-component cut then $G\left[V-S^{\prime}\right]$ has at least three components G_{1}, G_{2}, G_{3} where G_{1} is an isolated vertex $p_{1} \times p_{2} \times \cdots \times p_{r}, G_{2}$ is an isolated vertex $p_{1} \times p_{2} \times \cdots \times p_{r-1}$ and G_{3} is a connected component. Let us assume that $v \in S$ and $v \notin S^{\prime}$ if $v=p_{i}, i \in\{1,2, \ldots, r\}$. Since G_{1} is an isolated vertex $p_{1} \times p_{2} \times \cdots \times p_{r}$ then the $\left(p_{1} \times p_{2} \times \cdots \times p_{r}, p_{i}\right) \neq p_{i}$ which is a contradiction to the definition of an arithmetic graph. Similarly if $v=p_{i} \times p_{r-1}$ then we have $\left(p_{1} \times p_{2} \times \cdots \times p_{r-1}, p_{i} \times p_{r-1}\right) \neq p_{i}$ which is a contradiction. Therefore S is minimum and by Theorem 1.4, we have $\kappa_{3}(G)=|S|=d\left(p_{1} \times p_{2} \times \cdots \times p_{r}\right)+d\left(p_{1} \times p_{2} \times \cdots \times p_{r-1}\right)-|W|$. $=r+2(r-1)-(r-1)=2 r-1$, where $|w|$ is the number of vertices which are adjacent to both $p_{1} \times p_{2} \times \cdots \times p_{r}$ and $p_{1} \times p_{2} \times \cdots \times p_{r-1}$.

The following example shows that for any arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}}$ where $a_{1}>$ $2, a_{2} \geq 2$ the 3 -component connectivity number $\kappa_{3}(G)$ and the connectivity number $\kappa(G)$ are equal.

Example 2.1. The following Figure 1 shows an arithmetic graph $G=V_{72}, 72=2^{3} \times 3^{2}$. Clearly the vertex set consists of vertices $V(G)=\left\{2,2^{2}, 2^{3}, 3,3^{2}, 2 \times 3,2^{2} \times 3,2^{3} \times 3,2 \times 3^{2}, 2^{2} \times 3^{2}, 2^{3} \times 3^{2}\right\}$. The minimum degree $\delta(G)=2$ and the 3-component cut $S=\{2,3\}$.

Figure 2.1: Arithmetic graph $G=V_{72}$

The induced graph $G\left[V_{72}-S\right]$ shown in Figure 2, has three components G_{1}, G_{2} and G_{3} where G_{1} is a connected component, G_{2} and G_{3} are isolated vertices $2^{3} \times 3^{2}$ and $2^{2} \times 3^{2}$ respectively. By Theorem 1.6, the vertex cut is also $\{2,3\}$. This shows that $\kappa_{3}(G)=\kappa(G)$ as well as the vertices in 3 -component cut is same as the vertices in the vertex cut.

Theorem 2.8. For an arithmetic graph $G=V_{n}, n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, r \geq 3, a_{1}=2$ and $a_{j}=1, \forall j \in\{2, \ldots, r\}$. Then $\kappa_{3}(G)=r+1$.

Proof. Consider an arithmetic graph $G=V_{n}$ where $n=p_{1}^{2} \times p_{2} \times \cdots \times p_{r}, r \geq 3$. Then the graph G contains vertices such as $p_{1}, p_{2}, \ldots, p_{r}, p_{1}^{2}, p_{1} \times p_{2}, \ldots, p_{1} \times p_{r}, p_{1}^{2} \times p_{2}, \ldots, p_{1}^{2} \times p_{2}, p_{2} \times p_{3}, \ldots p_{r-1} \times$

Figure 2.2: Induced graph $G\left[V_{72}-S\right]$
$p_{r}, \ldots, p_{1} \times p_{2} \times \cdots \times p_{r}, p_{1}^{2} \times p_{2} \times \cdots \times p_{r}$. By Theorem 1.8 the connectivity number $\kappa(G)=r$ and the minimum vertex cut is $S_{1}=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$. The induced graph $G\left[V-S_{1}\right]$ has exactly two components G_{1} and G_{2} where G_{1} is an isolated vertex $p_{1}^{2} \times p_{2} \times \cdots \times p_{r}$ and G_{2} is a connected graph which contains all the vertices other than $V(G)-\{r+1\}$ vertices. Now the minimum degree vertex in the connected component G_{2} is $p_{1} \times p_{2} \times \cdots \times p_{r}$ and $N\left(p_{1} \times p_{2} \times \cdots \times p_{r}\right)=p_{1}^{2}$. So, the removal of the set $S=S_{1} \cup\left\{p_{1}^{2}\right\}$ from G makes the graph disconnected into exactly three components. Hence the set $S=\left\{p_{1}, p_{2}, \ldots, p_{r}, p_{1}^{2}\right\}$ is a 3 - component cut. Since the removal of any vertex from the set S, either violates the connectivity property or the number of components in the induced graph is less than three. Therefore the set S is minimum. Hence we have $\kappa_{3}(G)=|S|=r+1$.

Theorem 2.9. If $G=V_{n}$ is an arithmetic graph $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, r \geq 3, a_{i}>2$ for at least one i then $\kappa_{3}(G)=r$.

Proof. Let $G=V_{n}$ be an arithmetic graph where $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, r \geq 3$, Case(i) Let us assume that $a_{1}>2$ and $a_{j}=1$ for $j \in\{2,3, \ldots, r\}$. The vertex set $V(G)=\left\{p_{1}^{\alpha_{1}}, p_{2}, \ldots, p_{r}, p_{1}^{\alpha_{1}} \times p_{j}, p_{r-1} \times\right.$ $\left.p_{r} \ldots, p_{1}^{\alpha_{1}} \times p_{2} \times \cdots \times p_{r} ; 1 \leq \alpha_{1} \leq a_{1}, j=1,2 \ldots r\right\}$. Here the vertices $\left\{p_{1}^{\alpha_{1}} \times p_{2} \times \cdots \times p_{r} ; 1 \leq \alpha_{1} \leq a_{1}\right\}$ has degree r and have unique neighbors say $S=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$. So, the removal of S from G results the graph disconnected and since $a_{i}>2$ the number of isolated vertices in $G[V-S]$ is at least two and a connected component. Thus the set S satisfies the 3-Component cut definition, hence S is a 3 component cut. Also, By Theorem1.8 $\kappa(G)=r$, this shows that S is a minimum 3- component cut. Hence proved.

Case(ii)If $a_{i}>2$ for more than one i. Let us assume that $n=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}$ such that $a_{1} \geq a_{2} \geq \ldots a_{r}$. By the definition of an arithmetic graph, we know that ($p_{1}^{\alpha_{1}} \times p_{2}^{a_{2}} \times \cdots \times p_{r}^{a_{r}}, p_{i}$) $=p_{i}$; for $i \in\{1,2, \ldots, r\} ; 2<\alpha_{1} \leq a_{1}$. Since, $a_{1}>2$ the number of vertices in G which are adjacent only to $S=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ is at least two. Thus the induced graph $\mathrm{G}[\mathrm{V}-\mathrm{S}]$ has at least three components. Hence by the proof of Theorem 2.9 follows the required result.

3 Conclusion

From the above study, we observe that for an arithmetic graph $G=V_{n}$, if the number of primes in n is greater than two then the 3 -component connectivity number is strictly greater than its connectivity number. But if the number of primes in n is greater than two and at least one of its prime power is greater than two then the connectivity number and 3 -component connectivity number are same which is equal to number of primes in n.

References

[1] Abdol-Hossein Esfahanian, S.Louis Hakimi, On computing a conditional edge-connectivity of a graph, Information processing letters, Volume 27, Issue 4, 8 April 1988, pages 195-199.
[2] Bondy and Murty: Graph theory with applications, Macmillan (1976).
[3] Daniela Ferrero, Sarah Hanusch, Component Connectivity of generalized Petersen graphs, International journal of Computer Mathematics, Volume 00, Month20IX, 1-21.
[4] Jun-Ming Xu, Ke-Li Xu, Note on restricted edge-connectivity of graphs, Discrete Mathematics, 243 (2002) 291-298.
[5] Mary Jenitha.L and Sujitha.S ,The connectivity number of an arithmetic graph, International journal of Mathemaical combinatorics, special issue 1, (2018) 132-136.
[6] Mary Jenitha.L,Sujitha.S and Uma devi.B ,The average connectivity of an arithmetic graph, Journal of Computational Information Systems 15:1, (2019) 204-207
[7] Mary Jenitha.L and Sujitha.S, Super connected and hyper connected arithmetic graphs, Malaya Journal of Matematik, Vol.S,No. 1, (2020) 243-247.
[8] Mary Jenitha.L and Sujitha.S, The connectivity number of complement of an arithmetic graph $G=V_{n}$, Proceedings of the national conference on scientific approaches to multidisciplinary research, (2020),226-230.
[9] Rangarajan.R, Akram Alqesmath, Anwar Alwardi, On V_{n}-Arithmetic graph, International Journal of Computer Applications, (0975-8887), Volume 125, No.9, (2015).
[10] E. Sampathkumar, Connectivity of a graph-a generalization, J. Combin, Information System Sciences. 9 (1984), pp. 71-78.
[11] L. Hsu, E. Cheng, L. Liptak, J. Tan, C. Lin, and T. Ho, Component connectivity of the hypercubes, International Journal of Computer Mathematics 89 (2012), pp. 137-245.
[12] Vasumathi. N., and Vangipuram. S., Existence of a graph with a given domination Parameter, Proceedings of the Fourth Ramanujan Symposium on Algebra and its Applications; University of Madras, Madras, 187-195 (1995).

